Ejercicio nº 4

b) \(V_0 = -R_f \left[\frac{b_0}{3} + \frac{b_2}{3 \cdot 2} + \frac{b_1}{3 \cdot 4} + \frac{b_0}{3 \cdot 8} \right] \)

c) Sólo usan 2 valores de resistencias: R y 2 R.
 Son más rápidos ya que las resistencias pueden ser de valores más pequeños. Por lo tanto los valores de \(\tau \) debidos a las capacidades parásitas son menores.
 El tiempo de conversión de cada bit es el mismo.
 Todos los generadores tienen igual valor (facilita el proceso de fabricación).

d) LSB = \(V_{ref} / 2^n = 38 \text{ mV} \)
 \begin{align*}
 10 \text{ V} / 2^n & = 38 \text{ mV} \\
 2^n & = 10 \text{ V} / 38 \text{ mV} = 263,16 \\
 n \log 2 & = \log 263,16 \quad \Rightarrow \quad n = 8,04
 \end{align*}

Por lo tanto la resolución debe ser mayor a 8 bits.
Dado un **conversor A/D de 16 bits** y Vref = 10V:

a) Determinar cuál es el mínimo valor de incertidumbre de apertura de un S/H que se puede tolerar para lograr muestrear una señal sinusoidal de 3 Vpap de amplitud y frecuencia de 10 kHz sin que haya error.

b) Si a un conversor de 3 µs de tiempo de conversión se le adiciona un T/H con tiempo de adquisición de 2,5 µs, tiempo de apertura de 300 ns y tiempo de establecimiento de 800 ns, considerando que el tiempo de lectura de un dispositivo conectado al ADC es de 200 ns y el ancho del pulso de la señal de control de tracking es de 5 µs ¿cuál será la máxima frecuencia de muestreo?

c) Dibujar el diagrama en bloques del circuito y un diagrama de tiempos mostrando una señal analógica arbitraria a la entrada del T/H, la señal de control de tracking, la salida del T/H y la salida del conversor, marcando los tiempos mencionados en b).

\(V = V_0 \operatorname{sen} (2 \pi f t) \)

\(\Delta V = 2 \pi f V_0 \cos (2 \pi f t) \Delta Ta \)

\(\Delta Ta = \Delta V / 2 \pi f V_0 \cos (2 \pi f t) \)

\(\Delta T_{a_{\text{min}}} = \Delta V / 2 \pi f V_0 \quad \text{para} \cos (2 \pi f t) = 1 \)

\(\Delta V = \text{Vref} / 2^n = 10 \ V / 2^4 = 0,625 \ V \)

\(V_0 = V_{pap} / 2 = 3V / 2 = 1,5 \ V \)

\(2 \pi f V_0 = 2 \pi \times 10.000 \ \text{Hz} \times 1,5 \ V = 30.000 \ \pi \ [V/s] \)

\(\Delta T_{a_{\text{min}}} = 0,625 \ [V] / 30.000 \ \pi \ [V/s] = 6,6 \ \mu s \)

b)

\[\begin{align*}
\text{t}_{\text{tracking}} &= 5 \mu s \\
\text{t}_{\text{establecimiento}} &= 800 \text{ns} \\
\text{t}_{\text{lectura}} &= 200 \text{ns} \\
\text{t}_{\text{adquisición}} &= 2,5 \mu s \\
\text{t}_{\text{apertura}} &= 300 \text{ns} \\
\text{t}_{\text{conversión}} &= 3 \mu s
\end{align*}\]

\[T_{\text{muestreo}_{\text{min}}} = \text{T tracking + T establecimiento + T conversión + T lectura} \]

\[T_{\text{muestreo}_{\text{min}}} = 5000 \text{ ns} + 800 \text{ ns} + 3000 \text{ ns} + 200 \text{ ns} = 9000 \text{ ns} \]

\[F_{\text{muestreo}_{\text{máx}}} = 1 / 9000 \text{ ns} = 111,11 \text{ kHz} \]