DM54ALS192/DM74ALS192/DM54ALS193/DM74ALS193 Synchronous Four-Bit Up/Down Counters (Dual Clock with Clear)

General Description

The 'ALS192 and 'ALS193 are synchronous, reversible up/ down counters. The 'ALS192 is a 4-bit decade counter and the 'ALS193 is a 4-bit binary counter. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.
The outputs of the four flip-flops are triggered by a low-tohigh level transition of either count (clock) input (up or down). The direction of counting is determined by which count input is pulsed while the other count input is high.
All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.
A clear input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count and the load inputs. The clock, count, and load inputs are buffered to lower the drive requirements. This significantly reduces the loading on clock drivers, etc., for long parallel words.

These counters were designed to be cascaded without the need for external circuitry. The borrow output (BO) produces a low-level pulse while the count is zero (all outputs low) and the count-down input is low. Similarly, the carry output (CO) produces a low-level pulse while the count is maximum (9 or 15) and the count-up input is low. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count-down and count-up inputs, respectively, of the succeeding counter.

Features

- Switching specifications at 50 pF

■ Switching specifications guaranteed over full temperature and $V_{C C}$ range
■ Advanced oxide-isolated, ion-implanted Schottky TTL process

- Functionally and pin-for-pin compatible with Schottky and low power Schottky TTL counterparts
- Improved AC performance over Schottky and low power Schottky counterparts
- Look ahead circuitry enhances cascaded counters
- Fully synchronous in count mode
- Parallel asynchronous load for modulo-N count lengths
- Asynchronous clear

Connection Diagram

TL/F/6209-1
Order Number DM54ALS192J, 193J, DM74ALS192M, 193M or DM74ALS192N, 193N See NS Package Number J16A, M16A or N16A

[^0]
Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7 V
Input Voltage
Operating Free Air Temperature Range
DM54ALS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74ALS
0 to $+70^{\circ} \mathrm{C}$
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter			DM54ALS192, 193			DM74ALS192, 193			Units
				Min	Typ	Max	Min	Typ	Max	
V_{CC}	Supply Voltage			4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High Level Input Voltage			2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage					0.7			0.8	V
IOH	High Level Output Current					-0.4			-0.4	mA
l_{OL}	Low Level Output Current					4			8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency	'ALS192		0		20	0		25	MHz
		'ALS193		0		25	0		30	MHz
t_{W}	Pulse Duration	CLR High		10			10			ns
		$\overline{\text { LOAD Low }}$		25			20			ns
		UP or DOWN High or Low	'ALS192	25			20			ns
			'ALS193	30			16.5			ns
tsu	Setup Time	Data before $\overline{\text { LOAD } \uparrow}$		25			20			ns
		CLR Inactive before UP \uparrow or DOWN \uparrow		20			20			ns
		$\overline{\text { LOAD }}$ Inactive before UP \uparrow or DOWN \uparrow		20			20			ns
		UP High before DOWN \uparrow		17			17			ns
		DOWN High before UP \uparrow		15			15			ns
t_{H}	Hold Time	Data after $\overline{\text { LOAD } \uparrow}$		5			5			ns
		UP High after DOWN \uparrow		0			0			ns
		DOWN High after UP \uparrow		0			0			ns
T_{A}	Operating Free Air Temperature			-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range

Symbol	Parameter	Conditions			DM74ALS192, 193			Units
					Min	Typ (Note 1)	Max	
V_{IK}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$					-1.5	V
V_{OH}	High Level Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA} \end{aligned}$			$\mathrm{V}_{\mathrm{CC}}-2$			V
V_{OL}	Low Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\begin{aligned} & 54 / 74 \mathrm{Al} \\ & \mathrm{I}_{\mathrm{OL}}=4 \\ & \hline \end{aligned}$			0.25	0.4	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\begin{aligned} & 74 \mathrm{ALS} \\ & \mathrm{I}_{\mathrm{OL}}=8 \end{aligned}$			0.35	0.5	V
1	Input Current at Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=7 \mathrm{~V}$					0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V}$		UP, DOWN			-0.2	mA
				All Others			-0.1	mA

Electrical Characteristics over recommended operating free air temperature range (Continued)							

Note 1: All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: The output conditions have been chosen to produce a current that closely approximates one half of the true short circuit output current, los. Note 3: I ICC is measured with the clear and load inputs grounded, and all other inputs at 4.5 V .

Switching Characteristics (Note 4)

Symbol	Parameter	Conditions	From (Input)	To (Output)	DM54ALS192, 193		DM74ALS192, 193		Units
					Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	'ALS192	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=\operatorname{Min} \text { to } \operatorname{Max} \end{aligned}$			20		25		MHz
	'ALS193				25		30		MHz
${ }^{\text {tPLH }}$	Propagation Delay Time Low to High Level Output		Up	C0	3	20	4	16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		Up	CO	3	21	5	18	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		Down	B0	4	20	4	16	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output		Down	B0	5	22	5	18	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output		Up or Down	Any Q	4	27	4	19	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		Up or Down	Any Q	4	23	4	17	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		$\overline{\text { LOAD }}$	Any Q	8	38	8	30	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		$\overline{\text { LOAD }}$	Any Q	8	37	8	28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		CLR	Any Q	5	20	5	17	ns

Note 4: See Section 5 for test waveforms and output load

Pin numbers shown are for J and N packages.

Timing Diagrams (Continued)
'ALS193 Typical Clear, Load and Count Sequences

TL/F/6209-5
Note A: Clear overrides load, data, and count inputs.
Note B: When counting up, count-down input must be high; when counting down, count-up input must be high.

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N) Order Number DM74ALS 192N, 193N NS Package Number N16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

[^0]: product without notice.

